

# Synthesis of Carbazoles via an Intramolecular Cyclization of 2-(6-Substituted 3(Z)-hexen-1,5-diynyl)anilines and Their Related **Molecules**

Chia-Ying Lee,<sup>†</sup> Chi-Fong Lin,<sup>‡</sup> Jeng-Lin Lee,<sup>†</sup> Ching-Chen Chiu,<sup>‡</sup> Wen-Der Lu,<sup>†</sup> and Ming-Jung Wu<sup>\*,‡</sup>

Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, and Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

mijuwu@cc.kmu.edu.tw

Received October 14, 2003

Various 2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines 1a-g were treated with potassium *tert*butoxide or potassium 3-ethylpentanoxide in NMP at 60 °C for 2 h to give the corresponding 5-substituted carbazoles 2a-g in 36-65% yields together with indoles 9a-g in 21-40% yields, respectively. Exposing the trifluoroacetamide analogues 10h-k under the same reaction conditions gave the carbazoles **2b**-**e** in 37-57% yields and indoles **9b**-**e** in 15-27% yields. Subsequent cyclizations of acetamide analogues 10a-g gave carbazoles 2a-g in 53-86% yields.

# Introduction

Carbazoles are a series of natural products which are widely distributed in higher plants. An important part of the carbazole alkaloids and their correlative components is their variety of biological activities,<sup>1</sup> especially the highlight inhibitory activity of protein kinase C and topoisomerase.<sup>2</sup> Although related works on synthetic and natural isolated carbarzoles were found in abundance,<sup>3</sup> considerable attention is still being paid to the carbazole alkaloids because of the growing new active structures and their related studies.<sup>4</sup> Recently, we described several anionic cycloaromatization reactions of conjugated enediyne systems which provided novel methods to prepare

phenanthridinones,<sup>5,6</sup> biaryls,<sup>5,6</sup> and dibenzofurans.<sup>7</sup> In continuation of the application of anionic cycloaromatization of enediynes, we herein report a new synthesis of the carbazole nucleus 2 by way of intramolecular cyclization of 2-(6-substituted 3(Z)-hexen-1,5-diynyl)aniline 1 under alkaline conditions (eq 1).



#### **Results and Discussion**

The synthesis of 1a is outlined in Scheme 1. Sonogashira coupling reaction<sup>8</sup> of *cis*-dichlorethene (3) with 1-hexyne (4) gave vinyl chloride 5<sup>9</sup> in 50% yield. Compound 5 was then coupled with trimethylsilylacetylene under the same reaction conditions to give enediyne 6 in 91% yield. Treatment of 6 with potassium carbonate in dry methanol offered a desilylated product 7a in 79% yield. Finally, enediyne 7a was coupled with 2-iodoaniline (8) using tetrakis(triphenylphosphine)palladium as a catalyst to provide the desired 2-(3(Z)-decen-1,5-diynyl)aniline (1a) in 39% yield.<sup>10</sup>

Several attempts for the conversion of **1a** to the carbazole nucleus 2a have been carried out. Initially,

<sup>\*</sup> To whom correspondence should be addressed. Tel: 886-7-3121101 ext 2220. Fax: 886-7-3125339.

Graduate Institute of Pharmaceutical Sciences.

<sup>&</sup>lt;sup>‡</sup> Faculty of Medicinal and Applied Chemistry.

<sup>(1) (</sup>a) Chakraborty, D. P. In *The Alkaloids*; Bossi, A., Ed.; Academic (i) (a) Charladou (1993; Vol. 44, p 257. (b) Chakraborty, D. P.; Roy, S. Prog. Chem. Org. Nat. Prod. 1991, 57, 71. (c) Gallagher, P. T. Science of Synthesis; Thieme: Stuttgart, 2000; Vol. 10, pp 693–744. (d) Knölker, H. J. In Advances in Nitrogen Heterocycles; Moody, C. J., Ed.; JAI: Greenwich, 1995; Vol. 1, p 173. (e) Moody, C. J. Synlett 1994, 681.

<sup>(2) (</sup>a) Pindur, U.; Kim, Y. S.; Mebrabani, F. Curr. Med. Chem. 1999, 6 29. (b) Hung, D. T.; Jamison, F. T.; Schreiber, S. L. *Chem. Biol.* **1996**, *3*, 623. (c) Kleinschroth, J.; Hartenstein, J.; Schaechtete, C.; Rudolph, C.; Barth, C.; Aranda, J.; Betche, H. J. Ger. Offen. DE 4217964 1993; Chem. Abstr. 1994, 120, 270356c. (d) Omura, S.; Sasaki, Y.; Iwai, Y.; Takeshima, H. J. Antibiot. 1995, 48, 535.

<sup>(3) (</sup>a) Hagelin, H.; Oslob, J. D.; Akermark, B. Chem. Eur. J. 1999,

<sup>(3) (</sup>a) Hagelin, H.; Oslob, J. D.; Akermark, B. Chem. Eur. J. 1999, 5, 2413. (b) Knolker, H. J. Chem. Soc. Rev. 1999, 28, 151. (c) Pindur, U.; Erfanian-Abdoust, H. Chem. Rev. 1989, 89, 1681. (d) Grojahn, D. B.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 2091. (e) Boese, R.; Van Sickle, A. P.; Vollhardt, K. P. C. Synthesis 1994, 1374. (4) (a) Silvere, A.; Edwige, N.; Mireille, L.; Cecile, M.; Cao, W.; Kiefer, D. W.; Sheila, C.; Gerard, L.; Patrice, F. Bioorg. Med. Chem. Lett. 2002, 12, 209. (b) Istvan, E. J.; Ling, Y.; Kassoum, N.; Tork, T.; Wu, X.; Cao, Y.; Guo, R.; Li, B.; Zhu, X.; Huang, Y.; Long, Y. Q. J. Med. Chem. 2001, 44, 4313. (c) Adamczyk, M.; Johnson, D. D.; Mattingly, P. G.; Reddy, R. E. Drug. Prepr. Proced. Int. 2001, 33, 505. (d) Yasuo, K.; Yutaka, A.; Takeshi, S. J. Org. Chem. 2001, 66, 8612.

<sup>(5)</sup> Wu, M. J.; Lin, C. F.; Lu, W. D. J. Org. Chem. 2002, 67, 5907.
(6) Wu, M. J.; Lin, C. F.; Chen, S. H. Org. Lett. 1999, 1, 767.

<sup>(7)</sup> Wu, M. J.; Lee, J. Y.; Lin, C. F. Angew. Chem., Int. Ed. 2002,

<sup>41. 4077.</sup> (8) Sonogashira, K.; Yatake, T.; Tohda, Y.; Takahashi, S.; Hagihara,

N.; Chem. Commun. 1977, 291.

<sup>(9)</sup> Chemin, D.; Linstrumelle, G. Tetrahedron 1994, 50, 5335.

<sup>(10)</sup> Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 2488.

# SCHEME 1



TABLE 1. Probing Conditions for the Cyclization of 1a



2-(3(*Z*)-decen-1,5-diynyl)aniline (**1a**) was treated with sodium methoxide in refluxing methanol for 16 h to give an indole product **9a** in 40% yield; however, no desired carbazole **2a** was obtained (Table 1). Treatment of **1a** with *n*-BuLi in THF at 60 °C yielded neither the carbazole nor indole. However, treatment of compound **1a** with *t*-BuOK in NMP<sup>11</sup> at 60 °C for 2 h afforded 5-substituted carbazole **2a** in a yield of 58% together with indole product **9a** in a yield of 21%.

After the successful investigation of the synthesis of 5-substituted carbazoles, we then turned our attention to test the generality of this cyclization reaction. Various 2-(6-substituted 3(Z)-hexen-1,5-divnyl)anilines **1b**-g were prepared by the described method. Treatment of **1b**-g with t-BuOK under the same reaction conditions resulted in the formation of carbazoles 2b-g in yields of 36-60%and indoles 9b-g in 21-40% yield (Table 2). It was thought that the formation of the indoles could be due to the fast protonation during the cyclization process, and the employment of a more bulky base could reduce the rate of protonation process and would allow us to obtain the higher yield of carbazoles. Thus, potassium 3-ethylpentanoxide was introduced to this double cyclization reaction. The results are shown in Table 2. Treatment of 1a-g with potassium 3-ethylpentanoxide in NMP at 60 °C for 2 h formed carbazoles 2a-g as the major products in 37-65% yields together with indoles 9a-g as minor products in 20-30% yields. It seems that there is no significant alternation of the product formation by using potassium 3-ethylpentanoxide as a base. The indoles are still obtained as the minor product. Despite this, carbazoles were the major products of double cyclization reaction of 2-(6-substituted 3(Z)-hexen-1,5diynyl)anilines 1a-g.

 TABLE 2.
 Cyclization of 1a-g with Potassium

 tert-Butoxide or Potasium 3-Ethyl-3-pentanoxide



| <b>1e</b> , $R = n - C_7 H_{15}$                           | <b>2e</b> , 44                                                                                                                                                                                                                                                                                     | <b>9e</b> , 23                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1f</b> , $\mathbf{R} = (CH_2)_3 OTHP$                   | <b>2f</b> , 54                                                                                                                                                                                                                                                                                     | <b>9f</b> , 40                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1g</b> , $\mathbf{R} = (\mathbf{CH}_2)_4 \mathbf{OTHP}$ | <b>2g</b> , 60                                                                                                                                                                                                                                                                                     | <b>9g</b> , 31                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1a</b> , $R = n - C_4 H_9$                              | <b>2a</b> , 42                                                                                                                                                                                                                                                                                     | <b>9</b> a, 24                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1b</b> , $R = n - C_3 H_7$                              | <b>2b</b> , 65                                                                                                                                                                                                                                                                                     | <b>9b</b> , 28                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1c</b> , $R = n - C_5 H_{11}$                           | <b>2c</b> , 45                                                                                                                                                                                                                                                                                     | <b>9c</b> , 25                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1d</b> , $R = n - C_6 H_{13}$                           | 2d, 37                                                                                                                                                                                                                                                                                             | <b>9d</b> , 20                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1e</b> , $R = n - C_7 H_{15}$                           | <b>2e</b> , 60                                                                                                                                                                                                                                                                                     | <b>9e</b> , 26                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1f</b> , $\mathbf{R} = (CH_2)_3 OTHP$                   | <b>2f</b> , 40                                                                                                                                                                                                                                                                                     | <b>9f</b> , 30                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1g</b> , $\mathbf{R} = (\mathbf{CH}_2)_4 \mathbf{OTHP}$ | <b>2g</b> , 46                                                                                                                                                                                                                                                                                     | <b>9g</b> , 27                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                            | 1e, $R = n \cdot C_7 H_{15}$<br>1f, $R = (CH_2)_3 OTHP$<br>1g, $R = (CH_2)_4 OTHP$<br>1a, $R = n \cdot C_4 H_9$<br>1b, $R = n \cdot C_3 H_7$<br>1c, $R = n \cdot C_5 H_{11}$<br>1d, $R = n \cdot C_6 H_{13}$<br>1e, $R = n \cdot C_7 H_{15}$<br>1f, $R = (CH_2)_3 OTHP$<br>1g, $R = (CH_2)_4 OTHP$ | 1e, $R = n \cdot C_7 H_{15}$ 2e, 44         1f, $R = (CH_2)_3 OTHP$ 2f, 54         1g, $R = (CH_2)_4 OTHP$ 2g, 60         1a, $R = n \cdot C_4 H_9$ 2a, 42         1b, $R = n \cdot C_3 H_7$ 2b, 65         1c, $R = n \cdot C_5 H_{11}$ 2c, 45         1d, $R = n \cdot C_7 H_{15}$ 2e, 60         1f, $R = (CH_2)_3 OTHP$ 2f, 40         1g, $R = (CH_2)_3 OTHP$ 2f, 40         1g, $R = (CH_2)_4 OTHP$ 2g, 46 |

 TABLE 3.
 Synthesis of 10a-k by the Reaction of 1 with

 Acetyl Chloride or Trifluoroacetic Anhydride



| method <sup>a</sup> | compd                                                       | products, yields (%) |                 |
|---------------------|-------------------------------------------------------------|----------------------|-----------------|
| Α                   | <b>1a</b> , $R = n - C_4 H_9$                               | $R_1 = COCH_3$       | <b>10a</b> , 58 |
|                     | <b>1b</b> , $R = n - C_3 H_7$                               |                      | <b>10b</b> , 97 |
|                     | <b>1c</b> , $R = n - C_5 H_{11}$                            |                      | <b>10c</b> , 98 |
|                     | <b>1d</b> , $R = n - C_6 H_{13}$                            |                      | <b>10d</b> , 64 |
|                     | <b>1e</b> , $R = n - C_7 H_{15}$                            |                      | <b>10e</b> , 78 |
|                     | <b>1f</b> , $\mathbf{R} = (\mathbf{CH}_2)_3 \mathbf{OTHP}$  |                      | <b>10f</b> , 57 |
|                     | $\mathbf{1g}, \mathbf{R} = (\mathbf{CH}_2)_4 \mathbf{OTHP}$ |                      | <b>10g</b> , 55 |
| В                   | <b>1a</b> , $R = n - C_4 H_9$                               | $R_1 = COCF_3$       | 10h, 78         |
|                     | <b>1c</b> , $R = n - C_5 H_{11}$                            |                      | <b>10i</b> , 67 |
|                     | <b>1d</b> , $R = n - C_6 H_{13}$                            |                      | <b>10j</b> , 76 |
|                     | <b>1e</b> , $R = n - C_7 H_{15}$                            |                      | <b>10k</b> , 90 |
| a Conditio          | net (method A) CH_COCI                                      | Ft-N CH-Cl-          | 25 °C 2 h       |

<sup>a</sup> Conditions: (method A) CH<sub>3</sub>COCl, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, 2 h; (method B) (CF<sub>3</sub>CO)<sub>2</sub>O, Et<sub>3</sub>N, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C, 2 h.

To diminish the formation of indoles, we then turned our attention to the cyclization of N-acetyl-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines 10a-g. Compounds **10a**-g were prepared by reaction of **1a**-g with acetyl chloride (Table 3), and treatment of **10a**-g with *t*-BuOK in NMP at 60 °C for 2 h gave the carbazoles 2a-g in 45-86% yields. Only trace amount of indoles were observed using TLC in some cases. The trifluoroacetamide analogues 10h-k were also prepared (Table 3), and treatment of **10h-k** with *t*-BuOK under the same reaction conditions produced the carbazoles **2b**-e in 37-57% yields and indoles **9b-e** in 15-27% yields, respectively (Table 4). The results are similar to that of cyclization of **1b**-**e**. This possibly because the trifluoroacetyl group is more labile than the acetyl group under these reaction conditions. We also have the phenylsulfonamide analogue

# TABLE 4. Cyclization of 10a-k with t-BuOK



of **1a**, but cyclization of this derivative gave a very complicated product mixture.

# Conclusion

In conclusion, we have examined several reaction conditions for the synthesis of 5-substituted carbazoles by way of intramolecular anionic cyclization of 2-(6-substituted  $3(\mathbb{Z})$ -hexen-1,5-diynyl)anilines. Among them, the optimal condition to generate the carbazoles is the cyclization of *N*-acetyl-2-(6-substituted  $3(\mathbb{Z})$ -hexen-1,5-diynyl)anilines. The results strongly enhance the synthetic application of anionic cycloaromatization of enediynes.

#### **Experimental Section**

General Procedure for the Cyclization of 2-(6-Substituted 3(Z)-hexen-1,5-diynyl)anilines or N-Acetylanilines (Base A). To a stirred solution of 2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines or N-acetylanilines (1 mmol) in 10 mL of NMP was added *t*-BuOK (2.5 mmol), and the solution was heated to 60 °C and stirred for 2 h. After the solution was cooled to room temperature, a saturated aqueous solution of NaCl was added into the reaction mixture and extracted with EtOAc. The combined organic extracts were dried over anhydrous MgSO<sub>4</sub>. After filtration and removal of solvent, the residue was purified by column chromatography (silica gel, hexane as eluent) to give the products. **Base B:** The reaction conditions were as the same as the above conditions, except *t*-BuOK was replaced with potassium 3-ethylpentanoxide.

General Procedure for the Preparation of N-Acetyl-2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines and Their Related Derivative from 2-(6-Substituted 3(Z)-hexen-1,5diynyl)anilines (Base A). To a solution of 2-(6-substituted 3(Z)-hexen-1,5-diynyl)anilines (1 mmol) in 10 mL of CH<sub>2</sub>Cl<sub>2</sub> were added acetyl chloride (1.2 mmol) and triethylamine (1.5 mmol), and the solution was stirred for 4 h. Then, saturated aqueous NaCl solution was added and the mixture extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic extracts were dried over anhydrous MgSO<sub>4</sub>. After filtration and removal of solvent, the residue was purified by column chromatography to give the products. **Base B:** The reaction conditions were the same as above, except the acetyl chloride was replaced by trifluoroacetic anhydride (1.2 mmol).

**2°.(6-Butyl-3(Z)-hexen-1,5-diynyl)aniline (1a):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.31 (dt, J = 7.4, 0.6 Hz, 1H), 7.17 (td, J

= 7.2, 1.6 Hz, 1H), 6.73–6.64 (m, 2H), 6.05 (d, J = 10.6 Hz, 1H), 5.89 (dt, J = 10.6, 2.2 Hz, 1H), 4.43 (bs, 2H), 2.47 (td, J = 6.6, 2.2 Hz, 2H), 1.62–1.43 (m, 4H), 0.92 (t, J = 2.2 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  148.0, 131.9, 130.0, 119.2, 118.3, 117.7, 114.1, 107.7, 98.9, 93.1, 92.9, 78.9, 30.8, 22.0, 19.6, 13.6; HRMS (EI) calcd for C<sub>16</sub>H<sub>17</sub>N 223.1362, found 223.1359.

**2-(6-Propyl-3(Z)-hexen-1,5-diynyl)aniline (1b):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.31 (dt, J = 8.4, 0.8 Hz, 1H), 7.18 (td, J = 7.0, 1.6 Hz, 1H), 6.74–6.65 (m, 2H), 6.06 (d, J = 10.6 Hz, 1H), 5.89 (dt, J = 10.6, 2.2 Hz, 1H), 4.18 (bs, 2H), 2.46 (td, J = 7.0, 2.2 Hz, 2H), 1.62 (sext, J = 7.0 Hz, 2H), 1.03 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  148.0, 131.9, 129.9, 119.1, 118.3, 117.7, 114.1, 107.7, 98.8, 93.1, 92.9, 79.1, 29.7, 22.2, 13.6; HRMS (EI) calcd for C<sub>15</sub>H<sub>15</sub>N 209.1206, found 209.1211.

**2-(6-Pentyl-3(***Z***)-hexen-1,5-diynyl)aniline (1c):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.31 (dt, J = 7.6, 0.6 Hz, 1H), 7.17 (td, J = 7.2, 1.6 Hz, 1H), 6.73–6.64 (m, 2H), 6.05 (d, J = 10.8 Hz, 1H), 5.89 (dt, J = 10.8, 2.2 Hz, 1H), 4.44 (bs, 2H), 2.47 (td, J = 7.2, 2.2 Hz, 2H), 1.60 (sext, J = 7.0 Hz, 2H), 1.43–1.22 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  147.9, 131.9, 129.9, 119.1, 118.3, 117.7, 114.1, 107.7, 99.0, 92.9, 92.9, 78.9, 31.1, 28.5, 22.2, 19.8, 13.6; HRMS (EI) calcd for C<sub>17</sub>H<sub>19</sub>N 237.1519, found 237.1519.

**2-(6-Hexyl-3(Z)-hexen-1,5-diynyl)aniline (1d):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.33 (dd, J = 7.6, 1.4 Hz, 1H), 7.19 (td, J = 8.0, 1.4 Hz, 1H), 6.76 (td, J = 8.0, 2.2 Hz, 2H), 6.07 (d, J = 10.8 Hz, 1H), 5.91 (dt, J = 10.8, 2.2 Hz, 1H), 3.80 (bs, 2H), 2.49 (td, J = 6.8, 2.2 Hz, 2H), 1.65–1.28 (m, 8H), 0.94 (t, J = 6.6 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>. 50 MHz)  $\delta$  148.0, 131.9, 129.9, 119.1, 118.3, 117.7, 114.1, 107.7, 99.0, 92.9, 92.9, 78.9, 31.5, 28.7, 28.6, 22.2, 19.8, 13.6; HRMS (EI) calcd for C<sub>18</sub>H<sub>21</sub>N 251.1675, found 251.1675.

**2-(6-Heptyl-3(***Z***)-hexen-1,5-diynyl)aniline (1e):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.31 (dt, *J* = 7.6, 0.8 Hz, 1H), 7.17 (td, *J* = 7.4, 1.6 Hz, 1H), 6.73–6.64 (m, 2H), 6.05 (d, *J* = 10.6 Hz, 1H), 5.89 (dt, *J* = 10.6, 2.2 Hz, 1H), 4.44 (bs, 2H), 2.47 (td, *J* = 6.8, 2.0 Hz, 2H), 1.57 (sext, *J* = 7.0 Hz, 2H), 1.45–1.27 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  148.0, 131.9, 129.9, 119.2, 118.3, 117.7, 114.1, 107.7, 99.0, 93.1, 92.9, 78.9, 31.7, 29.7, 28.9, 28.8, 22.6, 19.9, 14.0; HRMS (EI) calcd for C<sub>19</sub>H<sub>23</sub>N 265.1832, found 265.1830.

**2-(9-Tetrahydropyanyloxy-3(***Z***)-nonen-1,5-diynyl)aniline (1f):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.31 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.18 (td, *J* = 7.4, 1.8 Hz, 1H), 6.75–6.00 (m, 2H), 5.88–5.82 (m, 2H), 4.58 (bs, 2H), 3.90–3.79 (m, 2H), 3.54– 3.46 (m, 2H), 2.90 (bs, 2H), 2.59 (td, *J* = 7.2, 2.2 Hz, 2H), 1.91– 1.22 (m, 8H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  153.6, 148.2, 131.8, 130.0, 119.1, 118.5, 117.6, 115.1, 106.5, 99.0, 93.1, 79.3, 66.0, 62.5, 30.7, 29.0, 25.4, 19.6, 16.7, 13.9; HRMS (EI) calcd for C<sub>19</sub>H<sub>23</sub>N 309.1729, found 309.1724.

**2-(9-Tetrahydropyanyloxy-3(***Z***)-decen-1,5-diynyl)**aniline (1g): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  7.29 (dt, *J* = 7.4, 1.6 Hz, 1H), 7.15 (td, *J* = 7.4, 1.6 Hz, 1H), 6.70–6.61 (m, 2H), 6.04 (d, *J* = 10.6 Hz, 1H), 5.87 (dt, *J* = 10.6, 2.2 Hz, 1H), 4.55-(t, *J* = 1.8 Hz, 1H), 3.92–3.70 (m, 2H), 3.52–3.39 (m, 2H), 2.49–2.43 (m, 2H), 1.81–1.52 (m, 10H); <sup>13</sup>C NMR (CDCl<sub>3</sub>. 50 MHz)  $\delta$  153.7, 148.3, 131.9, 130.1, 119.1, 118.5, 117.7, 114.1, 107.6, 99.1, 93.2, 79.4, 67.1, 62.7, 30.9, 29.1, 28.9, 25.8, 25.6, 19.9, 14.0; HRMS (EI) calcd for C<sub>19</sub>H<sub>23</sub>N 323.1885, found 323.1883.

**4-Butyl-9***H***-carbazole (2a):** <sup>1</sup>H NMR ( $C_6D_6$ , 400 MHz)  $\delta$ 8.36 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 7.8 (td, J = 6.8, 0.4 Hz, 1H), 7.64–7.54 (m, 2H), 7.54 (s, 1H), 6.95 (dd, J = 6.4, 2.8 Hz, 1H), 6.28 (dd, J = 6.8, 1.2 Hz, 1H), 3.21 (t, J = 7.6 Hz, 2H), 1.88 (quint, J = 7.2 Hz, 2H), 1.60 (sext, J = 7.2 Hz, 2H), 1.05 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR ( $C_6D_6$ , 100 MHz)  $\delta$  142.9, 139.5, 131.7, 123.2, 122.3, 121.6, 120.3, 118.2, 116.6, 108.2, 94.4, 34.9, 29.8, 23.2, 14.8; HRMS (EI) calcd for  $C_{15}H_{15}N$  223.1362, found 223.1361.

**4-Propyl-9***H***-carbazole (2b):** <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  8.10 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.38 (t, J =

7.6 Hz, 2H), 7.27 (td, J = 6.8, 2.4 Hz, 1H), 6.86 (dd, J = 6.8, 2.4 Hz, 1H), 6.75 (s, 1H), 6.29 (d, J = 6.8 Hz, 1H), 3.31 (t, J = 7.0 Hz, 2H), 1.93 (sext, J = 7.2 Hz, 2H), 0.86 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>, 100 MHz)  $\delta$  141.8, 138.5, 130.3, 130.2, 122.1, 121.6, 120.3, 119.2, 117.2, 115.4, 107.8, 92.8, 36.5, 20.3, 13.7; HRMS (EI) calcd for C<sub>16</sub>H<sub>17</sub>N 209.1206, found 209.1199.

**4-Pentyl-9***H***-carbazole (2c):** <sup>1</sup>H NMR ( $C_6D_6$ , 400 MHz)  $\delta$ 8.12 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.40 (t, J =7.2 Hz, 2H), 7.27 (td, J = 6.8, 1.2 Hz, 1H), 6.86 (dd, J = 7.6, 2.4 Hz, 1H), 6.76 (s, 1H), 6.29 (d, J = 6.8 Hz, 1H), 3.33 (t, J =7.6 Hz, 2H), 1.94–1.90 (m, 2H), 1.88–1.87 (m, 2H), 1.60–1.54 (m, 2H), 1.53–1.41 (m, 2H), 0.81 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR ( $C_6D_6$ . 100 MHz)  $\delta$  142.1, 138.5, 130.3, 130.2, 122.1, 121.6, 120.3, 119.2, 117.1, 115.4, 107.6, 92.8, 34.6, 31.5, 26.8, 22.5.3, 14.0; HRMS (EI) calcd for  $C_{17}H_{19}N$  237.1518, found 237.1525.

**4-Hexyl-9***H***-carbazole (2d):** <sup>1</sup>H NMR ( $C_6D_6$ , 200 MHz)  $\delta$ 8.38 (d, J = 8.8 Hz, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.79 (t, J =7.2 Hz, 1H), 7.64–7.54 (m, 2H), 6.96 (t, J = 6.4 Hz, 1H), 6.30 (d, J = 6.4 Hz, 1H), 3.23 (t, J = 7.6 Hz, 2H), 1.91–1.85 (m, 2H), 1.74–1.47 (m, 6H), 0.82 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR ( $C_6D_6$ , 50 MHz)  $\delta$  142.9, 139.5, 131.7, 131.6, 123.3, 122.3, 121.6, 120.3, 118.2, 116.5, 108.2, 94.4, 35.3, 32.5, 29.8, 27.7, 23.5, 14.9; HRMS (EI) calcd for  $C_{18}H_{21}N$  251.1675, found 251.1672.

**4-Heptyl-9***H***-carbazole (2e):** <sup>1</sup>H NMR ( $C_6D_6$ , 200 MHz)  $\delta$ 8.12 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 7.0 Hz, 1H), 7.45–7.22 (m, 3H), 6.94 (t, J = 7.0 Hz, 1H), 6.35 (d, J = 6.2 Hz, 1H), 3.35 (t, J = 7.6 Hz, 2H), 1.94–1.82 (m, 2H), 1.61–1.19 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR ( $C_6D_6$ , 100 MHz)  $\delta$  142.1, 138.6, 132.1, 131.1, 122.0, 121.7, 120.3, 119.2, 117.1, 115.4, 107.6, 92.8, 34.6, 31.7, 29.7, 29.3, 27.1, 22.6, 14.1; HRMS (EI) calcd for  $C_{19}H_{23}N$  265.1832, found 265.1828.

**4-[3-(Tetrahydropyran-2-yloxy)propyl]-9***H*-carbazole (**2f**): <sup>1</sup>H NMR ( $C_6D_6$ , 400 MHz)  $\delta$  8.26 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.29 (dd, J = 7.6, 1.6 Hz, 1H), 7.26 (d, J = 1.2 Hz, 1H), 6.79 (s, 1H), 6.57 (dd, J = 6.4, 2.8 Hz, 1H), 5.96 (d, J = 6.0 Hz, 1H), 4.55 (t, J = 3.2 Hz, 1H), 3.81–3.74 (m, 2H), 3.43–3.39 (m, 1H), 3.28–3.22 (m, 1H), 3.13–3.04 (m, 2H), 1.85–1.77 (m, 2H), 1.65–1.59 (m, 2H), 1.40–1.23 (m, 4H); <sup>13</sup>C NMR ( $C_6D_6$ , 100 MHz)  $\delta$  142.6, 139.4, 131.7, 131.6, 123.3, 122.3, 121.5, 120.4, 118.3, 116.9, 108.6, 99.3, 94.5, 66.9, 62.3, 32.3, 31.7, 28.4, 26.6, 20.9; HRMS (EI) calcd for  $C_{20}H_{23}NO_2$  309.1729, found 309.1730.

**4-[3-(Tetrahydropyran-2-yloxy)butyl]-9***H*-**carbazole (2g):** <sup>1</sup>H NMR ( $C_6D_6$ , 400 MHz)  $\delta$  8.10 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.45–7.31 (m, 3H), 7.24–7.18 (m, 1H), 6.72 (s, 1H), 6.28 (d, J = 6.4 Hz, 1H), 4.58 (t, J = 4.4 Hz, 1H), 3.86– 3.81 (m, 2H), 3.50–3.44 (m, 2H), 3.37 (t, J = 7.2 Hz, 2H), 2.02– 1.86 (m, 2H), 1.85–1.71 (m, 2H), 1.69–1.47 (m, 6H); <sup>13</sup>C NMR ( $C_6D_6$ , 100 MHz)  $\delta$  142.1, 131.7, 130.2, 128.3, 122.2, 121.8, 120.3, 119.3, 117.3, 115.5, 107.8, 99.0, 67.2, 62.5, 31.6, 30.6, 29.7, 25.4, 19.7; HRMS (EI) calcd for  $C_{21}H_{25}NO_2$  323.1885, found 323.1878.

**2-Oct-1-en-3-ynyl-1***H***-indole (9a):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.09 (s, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 7.0 Hz, 1H), 7.22 (t, J = 6.8 Hz, 1H), 7.18 (t, J = 7.0 Hz, 1H), 6.89 (d, J = 16.2 Hz, 1H), 6.53 (s, 1H), 5.98 (dt, J = 16.2, 2.2 Hz, 1H), 2.42 (td, J = 6.8, 1.8 Hz, 2H), 1.59–1.33 (m, 4H), 0.88 (t, J = 7.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  138.5, 128.7, 128.3, 123.2, 120.8, 120.3, 110.6, 107.1, 103.9, 94.1, 79.8, 29.7, 22.0, 19.4, 13.6; HRMS (EI) calcd for C<sub>15</sub>H<sub>15</sub>N 223.1362, found 223.1350.

**2-Hept-1-en-3-ynyl-1***H***-indole (9b):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) d 8.10 (s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 7.2 Hz, 1H), 7.20 (t, J = 7.0 Hz, 1H), 7.15 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 16.2 Hz, 1H), 6.51 (s, 1H), 5.97 (dt, J = 16.2, 2.2 Hz, 1H), 2.40 (td, J = 7.0, 1.8 Hz, 2H), 1.56–1.31 (m, 2H), 0.89 (t, J = 7.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  139.1, 129.2, 128.5, 123.5, 120.7, 120.3, 110.5, 107.1, 103.7, 93.9, 79.9, 36.1, 21.1, 13.5; HRMS calcd for C<sub>16</sub>H<sub>17</sub>N 209.1206, found 209.1208.

**2-Non-1-en-3-ynyl-1***H***-indole (9c):** <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz)  $\delta$  7.54 (d, J = 8.0 Hz, 1H), 7.22 (dt, J = 8.4, 2.8 Hz, 1H), 7.19 (td, J = 8.0, 0.8 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.84 (d,

 $J = 16.4 \text{ Hz}, 1\text{H}), 6.33 \text{ (s, 1H)}, 5.82 \text{ (dt, } J = 16.4, 2.4 \text{ Hz}, 1\text{H}), 2.28 \text{ (td, } J = 7.2, 2.0 \text{ Hz}, 2\text{H}), 1.51-1.19 \text{ (m, 6H)}, 0.87 \text{ (t, } J = 7.2 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (C_6\text{D}_6, 100 \text{ MHz}) \delta 136.3, 131.4, 131.2, 123.9, 121.9, 121.2, 111.8, 108.3, 105.0, 102.7, 94.6, 81.1, 29.7, 28.4, 22.2, 19.7, 14.2; HRMS (EI) calcd for C_{17}\text{H}_{19}\text{N} 237.1518, found 237.1514.$ 

**2-Dec-1-en-3-ynyl-1***H***-indole (9d):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.11 (s, 1H), 7.56 (td, J = 6.0, 0.8 Hz, 1H), 7.32 (dd, J = 8.0, 0.8 Hz, 1H), 7.20 (td, J = 7.6, 1.2 Hz, 1H), 7.09 (td, J = 6.0, 1.2 Hz, 1H), 6.87 (d, J = 1.6 Hz, 1H), 6.54 (d, J = 1.6 Hz, 1H), 5.97 (dt, J = 16.4, 2.4 Hz, 1H), 2.40 (td, J = 7.2, 2.4 Hz, 2H), 1.70–1.07 (m, 8H), 0.84 (t, J = 7.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  148.8, 141.3, 139.7, 128.5, 126.5, 122.7, 121.9, 121.1, 120.2, 111.6, 110.3, 96.8, 34.9, 31.9, 31.7, 29.4, 22.6, 14.1; HRMS (EI) calcd for C<sub>18</sub>H<sub>21</sub>N 251.1675, found 251.1679.

**2-Undec-1-en-3-ynyl-1***H***-indole (9e):** <sup>1</sup>H NMR ( $C_{6}D_{6}$ , 400 MHz)  $\delta$  7.54 (d, J = 7.2 Hz, 1H), 7.21–7.16 (m, 3H), 7.13 (td, J = 6.8 Hz, 1H), 7.02 (dd, J = 8.4, 0.8 Hz, 1H), 6.85 (d, J = 16.4 Hz, 1H), 6.33 (s, 1H), 5.83 (dt, J = 16, 2.4 Hz, 1H), 2.32 (dt, J = 6.8 Hz, 2.0 Hz, 2H), 1.64–1.51 (m, 2H), 1.49–1.20 (m, 8H), 0.92 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR ( $C_{6}D_{6}$ , 100 MHz)  $\delta$  138.2, 136.3, 131.2, 123.9, 130.0, 123.9, 121.9, 121.2, 111.7, 108.3, 105.0, 94.6, 81.1, 32.8, 30.8, 29.9, 23.7, 21.2, 20.8, 14.9; HRMS (EI) calcd for  $C_{19}H_{23}N$  265.1832, found 265.1834.

**2-[7-(Tetrahydropyran-2-yloxy)hept-1-en-3-ynyl]-1***H***-<b>indole (9f):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.29 (s, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 8.8, 0.8 Hz, 1H), 7.21 (td, J = 8.0, 0.8 Hz, 1H), 7.11 (td, J = 7.2, 1.2 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.54 (t, J = 2.8 Hz, 1H), 5.96 (dt, J = 4.4, 2.0 Hz, 1H), 4.76 (t, J = 2.8 Hz, 1H), 3.95–3.87 (m, 2H), 3.57–3.52 (m, 2H), 2.55 (td, J = 6.8, 2.0 Hz, 2H), 1.92–1.73 (m, 4H), 1.65–1.53 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  136.9, 135.4, 130.3, 128.7, 123.1, 120.7, 120.2, 110.7, 106.9, 103.9, 93.1, 79.8, 65.9, 62.2, 30.7, 29.6, 28.9, 25.4, 19.5, 16.6; HRMS (EI) calcd for C<sub>20</sub>H<sub>23</sub>NO<sub>2</sub> 309.1729, found 309.1721.

**2-[8-(Tetrahydropyran-2-yloxy)oct-1-en-3-ynyl]-1***H***-indole (9g): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) \delta 8.28 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.30 (dd, J = 8.4, 0.8 Hz, 1H), 7.19 (td, J = 8.0, 0.8 Hz, 1H), 7.13 (td, J = 7.6, 1.6 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.52 (t, J = 2.8 Hz, 1H), 5.92 (dt, J = 4.8, 2.4 Hz, 1H), 4.75 (t, J = 2.8 Hz, 1H), 3.90–3.78 (m, 2H), 3.54–3.48 (m, 2H), 2.53 (td, J = 7.2, 2.4 Hz, 2H), 1.90–1.71 (m, 6H), 1.65–1.53 (m, 4H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) \delta 136.8, 135.3, 130.1, 128.6, 123.1, 120.7, 120.1, 110.5, 107.1, 103.8, 92.9, 79.5, 65.8, 62.3, 30.9, 29.5, 28.9, 25.4, 19.5, 16.6, 14.1; HRMS (EI) calcd for C<sub>21</sub>H<sub>25</sub>NO<sub>2</sub> 323.1885, found 323.1881.** 

**N-Acetyl-2-(6-butyl-3(***Z***)-hexen-1,5-diynyl)aniline (10a):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.43 (d, *J* = 8.8 Hz, 1H), 8.09 (s, 1H), 7.35–7.29 (m, 2H), 7.08 (td, *J* = 7.8, 1.2 Hz, 1H), 5.98 (dd, *J* = 3.6,1.8 Hz, 2H), 2.45 (td, *J* = 7.0, 1.8 Hz, 2H), 2.23 (s, 3H), 1.63–1.33 (m, 2H), 0.92 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  168.2, 138.8, 131.5, 129.8, 123.3, 120.9, 119.2, 116.9, 111.7, 99.9, 94.1, 90.7, 78.6, 31.1, 28.4, 22.1, 21.9, 13.7; HRMS (EI) calcd for C<sub>18</sub>H<sub>19</sub>NO 265.1467, found 265.1475.

**N**-Acetyl-2-(6-propyl-3(*Z*)-hexen-1,5-diynyl)aniline (10b): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.56 (d, *J* = 8.0 Hz, 1H), 8.24 (s, 1H), 7.57–7.39 (m, 2H), 7.21 (td, *J* = 7.2, 1.0 Hz, 1H), 6.13 (dd, *J* = 3.8, 1.6 Hz, 2H), 2.56 (td, *J* = 7.2 Hz, 2H), 2.36 (s, 3H), 1.78–1.63 (m, 2H), 1.07 (t, *J* = 6.6 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  169.8, 138.9, 131.6, 129.9, 123.8, 123.3, 120.9, 119.2, 117.1, 99.8, 94.1, 90.7, 78.6, 28.4, 22.1, 21.9, 13.5; HRMS (EI) calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>2</sub> 251.1310, found 251.1304.

**N**–**Acetyl-2-(6-pentyl-3(Z)-hexen-1,5-diynyl)aniline (10c):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.43 (d, J = 8.0 Hz, 1H), 8.11 (s, 1H), 7.44–7.29 (m, 2H), 7.08 (td, J = 7.8, 1.2 Hz, 1H), 6.05– 5.91 (m, 2H), 2.45 (td, J = 6.8, 1.8 Hz, 2H), 2.24 (s, 3H), 1.64– 1.50 (m, 2H), 1.46–1.30 (m, 4H), 0.87 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (CDCl 50 MHz)  $\delta$  168.1, 138.8, 131.5, 129.8, 123.2, 120.9, 119.1, 116.9, 111.7, 99.9, 94.0, 90.6, 78.4, 30.9, 28.3, 22.1, 22.1, 19.9, 13.8; HRMS (EI) calcd for C<sub>21</sub>H<sub>25</sub>NO<sub>2</sub> 279.1623, found 279.1620. **N-Acetyl-2-(6-hexyl-3(Z)-hexen-1,5-diynyl)aniline (10d):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.43 (d, J = 8.2 Hz, 1H), 8.11 (s, 1H), 7.44–7.30 (m, 2H), 7.08 (td, J = 7.6, 0.8 Hz, 1H), 6.04– 5.92 (m, 2H), 2.44 (td, J = 7.0, 1.4 Hz, 2H), 2.23 (s, 3H), 1.61– 1.23 (m, 8H), 0.85 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  168.1, 138.8, 131.5, 129.8, 123.2, 120.9, 119.1, 116.9, 111.7, 99.9, 94.0, 90.7, 78.5, 31.2, 28.6, 28.5, 24.7, 22.4, 19.9, 13.9; HRMS (EI) calcd for C<sub>21</sub>H<sub>25</sub>NO<sub>2</sub> 293.1780, found 293.1772.

**N**-Acetyl-2-(6-heptyl-3(Z)-hexen-1,5-diynyl)aniline (10e): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.43 (d, J = 8.2 Hz, 1H), 8.11 (s, 1H), 7.43–7.29 (m, 2H), 7.07 (td, J = 7.6, 1.4 Hz, 1H), 6.04– 5.91 (m, 2H), 2.44 (td, J = 6.6, 1.4 Hz, 2H), 2.23 (s, 3H), 1.59– 1.21 (m, 10H), 0.87 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  168.1, 138.8, 131.5, 129.9, 123.3, 121.0, 119.2, 117.0, 111.7, 99.9, 94.1, 90.7, 78.5, 31.6, 28.8, 28.7, 28.6, 24.8, 22.6, 20.0, 14.0; HRMS (EI) calcd for C<sub>21</sub>H<sub>25</sub>NO 307.1936, found 307.1944.

**N-Acetyl-2-(9-tetrahydropyran-2-yloxy-3(Z)-nonen-1,5diynyl)aniline (10f):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.53 (d, J = 8.4 Hz, 1H), 8.22 (s, 1H), 7.55–7.37 (m, 2H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 6.22–5.18 (m, 2H), 4.66 (s, 1H), 3.98–3.88 (m, 2H), 3.67–3.53 (m, 2H), 3.68 (td, J = 7.6, 1.8 Hz, 2H), 2.35 (s, 3H), 1.99–1.58 (m, 6H), 0.99–0.93 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  168.1, 138.7, 131.6, 129.9, 123.3, 120.8, 119.2, 117.2, 98.8, 94.4, 94.0, 90.8, 78.7, 71.9, 65.7, 62.2, 30.6, 28.9, 25.4, 20.2, 19.5, 16.9; HRMS (EI) calcd for C<sub>22</sub>H<sub>25</sub>NO<sub>3</sub> 351.1834, found 351.1859.

**N**-Acetyl-2-(9-tetrahydropyran-2-yloxy-3(*Z*)-decen-1,5diynyl)aniline (10g): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.34 (d, J = 8.0 Hz, 1H), 8.05 (s, 1H), 7.36–7.21 (m, 2H), 7.01 (t, J =7.4 Hz, 1H), 5.97–5.84 (m, 2H), 4.46 (s, 1H), 3.76–3.60 (m, 2H), 3.45–3.26 (m, 2H), 2.42 (td, J = 6.2, 1.4 Hz, 2H), 2.16 (s, 3H), 1.74–1.35 (m, 8H), 0.89–0.77 (m, 2H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  168.1, 138.8, 131.5, 129.8, 123.2, 120.8, 119.2, 117.0, 99.4, 98.4, 93.9, 90.7, 78.6, 77.6, 77.0, 76.4, 66.7, 62.2, 30.6, 28.8, 25.3, 24.7, 20.9, 19.5, 14.1; HRMS (EI) calcd for C<sub>23</sub>H<sub>27</sub>-NO<sub>3</sub> 365.1991, found 365.2017.

**N-Trifluoroacetyl-2-(6-butyl-3(Z)-hexen-1,5-diynyl)aniline (10h):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.81 (s, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.50–7.32 (m, 2H), 7.21 (td, J = 7.6, 1.0 Hz, 1H), 5.97 (s, 2H), 2.41 (t, J = 6.8 Hz, 2H), 2.41 (t, J = 6.8Hz, 2H), 1.57–1.23 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR  $(CDCl_3,\ 50\ MHz)\ \delta$  156.1, 155.3, 136.1, 132.3, 130.2, 125.7, 122.6, 120.0, 116.5, 113.7, 101.8, 95.7, 89.2, 78.3, 31.1, 28.3, 22.2, 19.9, 13.9; HRMS (EI) calcd for  $C_{18}H_{16}ONF_3$  319.1184, found 319.1161.

**N-Trifluoroacetyl-2-(6-pentyl-3(***Z***)-hexen-1,5-diynyl)**aniline (10i): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) δ 8.82 (s, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 7.52–7.36 (m, 2H), 7.23 (td, *J* = 7.8, 1.2 Hz, 1H), 5.99 (s, 2H), 2.43 (t, *J* = 6.6 Hz, 2H), 2.43 (t, *J* = 6.6 Hz, 2H), 1.59–1.25 (m, 6H), 0.86 (t, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) δ 155.9, 155.1, 136.2, 132.2, 130.1, 125.6, 122.5, 119.8, 116.3, 113.6, 101.2, 95.5, 89.0, 78.1, 31.2, 28.4, 22.3, 19.9, 13.9; HRMS (EI) calcd for C<sub>19</sub>H<sub>18</sub>ONF<sub>3</sub> 333.1341, found 333.1332.

**N-Trifluoroacetyl-2-(6-hexyl-3(Z)-hexen-1,5-diynyl)aniline (10j):** <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.84 (s, 1H), 8.42 (d, J = 8.4 Hz, 1H), 7.54–7.38 (m, 2H), 7.25 (td, J = 7.6, 1.0 Hz, 1H), 6.02 (s, 2H), 2.45 (t, J = 6.6 Hz, 2H), 1.62–1.21 (m, 8H), 0.89 (t, J = 6.6 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  154.9, 154.1, 135.9, 131.9, 129.9, 125.4, 122.3, 119.6, 116.1, 113.5, 100.9, 95.3, 88.8, 77.9, 31.3, 29.7, 28.5, 22.4, 19.8, 13.9; HRMS (EI) calcd for C<sub>20</sub>H<sub>22</sub>ONF<sub>3</sub> 347.1497, found 347.1526.

**N-Trifluoroacetyl-2-(6-heptyl-3(***Z***)-hexen-1,5-diynyl)**aniline (10k): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz)  $\delta$  8.82 (s, 1H), 8.40 (d, *J* = 7.2 Hz, 1H), 7.52–7.37 (m, 2H), 7.23 (td, *J* = 7.8, 1.4 Hz, 1H), 5.99 (s, 2H), 2.43 (t, *J* = 6.6 Hz, 2H), 1.59–1.45 (m, 10H), 0.87 (t, *J* = 6.2 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz)  $\delta$  155.9, 155.1, 135.8, 131.9, 129.9, 125.4, 122.3, 119.6, 116.1, 113.5, 100.9, 95.3, 88.9, 77.9, 31.3, 29.7, 28.7, 28.5, 22.4, 19.8, 13.9; HRMS (EI) calcd for C<sub>21</sub>H<sub>22</sub>ONF<sub>3</sub> 361.1654, found 361.1645.

**Acknowledgment.** We thank the National Science Council of the Republic of China for financial support of this program.

**Supporting Information Available:** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of compounds **1a–g**, **2a–g**, **9a–g**, and **10a–k**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0303158